25 resultados para Genotyping

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, two separate single nucleotide polymorphism (SNP) genotyping techniques were set up at the Finnish Genome Center, pooled genotyping was evaluated as a screening method for large-scale association studies, and finally, the former approaches were used to identify genetic factors predisposing to two distinct complex diseases by utilizing large epidemiological cohorts and also taking environmental factors into account. The first genotyping platform was based on traditional but improved restriction-fragment-length-polymorphism (RFLP) utilizing 384-microtiter well plates, multiplexing, small reaction volumes (5 µl), and automated genotype calling. We participated in the development of the second genotyping method, based on single nucleotide primer extension (SNuPeTM by Amersham Biosciences), by carrying out the alpha- and beta tests for the chemistry and the allele-calling software. Both techniques proved to be accurate, reliable, and suitable for projects with thousands of samples and tens of markers. Pooled genotyping (genotyping of pooled instead of individual DNA samples) was evaluated with Sequenom s MassArray MALDI-TOF, in addition to SNuPeTM and PCR-RFLP techniques. We used MassArray mainly as a point of comparison, because it is known to be well suited for pooled genotyping. All three methods were shown to be accurate, the standard deviations between measurements being 0.017 for the MassArray, 0.022 for the PCR-RFLP, and 0.026 for the SNuPeTM. The largest source of error in the process of pooled genotyping was shown to be the volumetric error, i.e., the preparation of pools. We also demonstrated that it would have been possible to narrow down the genetic locus underlying congenital chloride diarrhea (CLD), an autosomal recessive disorder, by using the pooling technique instead of genotyping individual samples. Although the approach seems to be well suited for traditional case-control studies, it is difficult to apply if any kind of stratification based on environmental factors is needed. Therefore we chose to continue with individual genotyping in the following association studies. Samples in the two separate large epidemiological cohorts were genotyped with the PCR-RFLP and SNuPeTM techniques. The first of these association studies concerned various pregnancy complications among 100,000 consecutive pregnancies in Finland, of which we genotyped 2292 patients and controls, in addition to a population sample of 644 blood donors, with 7 polymorphisms in the potentially thrombotic genes. In this thesis, the analysis of a sub-study of pregnancy-related venous thromboses was included. We showed that the impact of factor V Leiden polymorphism on pregnancy-related venous thrombosis, but not the other tested polymorphisms, was fairly large (odds ratio 11.6; 95% CI 3.6-33.6), and increased multiplicatively when combined with other risk factors such as obesity or advanced age. Owing to our study design, we were also able to estimate the risks at the population level. The second epidemiological cohort was the Helsinki Birth Cohort of men and women who were born during 1924-1933 in Helsinki. The aim was to identify genetic factors that might modify the well known link between small birth size and adult metabolic diseases, such as type 2 diabetes and impaired glucose tolerance. Among ~500 individuals with detailed birth measurements and current metabolic profile, we found that an insertion/deletion polymorphism of the angiotensin converting enzyme (ACE) gene was associated with the duration of gestation, and weight and length at birth. Interestingly, the ACE insertion allele was also associated with higher indices of insulin secretion (p=0.0004) in adult life, but only among individuals who were born small (those among the lowest third of birth weight). Likewise, low birth weight was associated with higher indices of insulin secretion (p=0.003), but only among carriers of the ACE insertion allele. The association with birth measurements was also found with a common haplotype of the glucocorticoid receptor (GR) gene. Furthermore, the association between short length at birth and adult impaired glucose tolerance was confined to carriers of this haplotype (p=0.007). These associations exemplify the interaction between environmental factors and genotype, which, possibly due to altered gene expression, predisposes to complex metabolic diseases. Indeed, we showed that the common GR gene haplotype associated with reduced mRNA expression in thymus of three individuals (p=0.0002).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pharmacogenetics deals with genetically determined variation in drug response. In this context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes coding for these enzymes in human populations exhibit high genetic polymorphism, they are of major pharmacogenetic importance. The aims of this study were to develop new genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would cover the most important genetic variants altering the enzyme activity, and, for the first time, to describe the distribution of genetic variation at these loci on global and microgeographic scales. In addition, pharmacogenetics was applied to a postmortem forensic setting to elucidate the role of genetic variation in drug intoxications, focusing mainly on cases related to tricyclic antidepressants, which are commonly involved in fatal drug poisonings in Finland. Genetic variability data were obtained by genotyping new population samples by the methods developed based on PCR and multiplex single-nucleotide primer extension reaction, as well as by collecting data from the literature. Data consisted of 138, 129, and 146 population samples for CYP2D6, CYP2C9, and CYP2C19, respectively. In addition, over 200 postmortem forensic cases were examined with respect to drug and metabolite concentrations and genotypic variation at CYP2D6 and CYP2C19. The distribution of genetic variation within and among human populations was analyzed by descriptive statistics and variance analysis and by correlating the genetic and geographic distances using Mantel tests and spatial autocorrelation. The correlation between phenotypic and genotypic variation in drug metabolism observed in postmortem cases was also analyzed statistically. The genotyping methods developed proved to be informative, technically feasible, and cost-effective. Detailed molecular analysis of CYP2D6 genetic variation in a global survey of human populations revealed that the pattern of variation was similar to those of neutral genomic markers. Most of the CYP2D6 diversity was observed within populations, and the spatial pattern of variation was best described as clinal. On the other hand, genetic variants of CYP2D6, CYP2C9, and CYP2C19 associated with altered enzymatic activity could reach extremely high frequencies in certain geographic regions. Pharmacogenetic variation may also be significantly affected by population-specific demographic histories, as seen within the Finnish population. When pharmacogenetics was applied to a postmortem forensic setting, a correlation between amitriptyline metabolic ratios and genetic variation at CYP2D6 and CYP2C19 was observed in the sample material, even in the presence of confounding factors typical for these cases. In addition, a case of doxepin-related fatal poisoning was shown to be associated with a genetic defect at CYP2D6. Each of the genes studied showed a distinct variation pattern in human populations and high frequencies of altered activity variants, which may reflect the neutral evolution and/or selective pressures caused by dietary or environmental exposure. The results are relevant also from the clinical point of view since the genetic variation at CYP2D6, CYP2C9, and CYP2C19 already has a range of clinical applications, e.g. in cancer treatment and oral anticoagulation therapy. This study revealed that pharmacogenetics may also contribute valuable information to the medicolegal investigation of sudden, unexpected deaths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity increases the risk for several conditions, including type 2 diabetes mellitus, cardiovascular disease, hypertension, osteoarthirits and certain types of cancer. Twin- and family studies have shown that there is a major genetic component in the determination of body mass. In recent years several technological and scientific advance have been made in obesity research. For instance, novel replicated loci have been revealed by a number of genome wide association studies. This thesis aimed to investigate the association of genetic factors and obesity-related quantitative traits. The first study investigated the role of the lactase gene in anthropometric traits. We genetically defined lactose persistence by genotyping 31 720 individuals of European descent. We found that lactase persistence was significantly correlated with weight and body mass index but not with height. In the second study we performed the largest whole genome linkage scan for body mass index to date. The sample consisted of 4401 twin families and 10 535 individuals from six European countries. We found supporting evidence for two loci (3q29 and 7q36). We observed that the heritability estimate increased substantially when additional family members were removed from the analyses, which suggests reduced environmental variance in the twin sample. In the third study we assessed metabonomic, transcriptomic and genomic variation in a Finnish population cohort of 518 individuals. We formed gene expression networks to portray pathways and showed that a set of highly correlated genes of an inflammatory pathway associated with 80 serum metabolites (of 134 quantified measures). Strong association was found, for example, with several lipoprotein subclasses. We inferred causality by using genetic variation as anchors. The expression of the network genes was found to be dependent on the circulatory metabolite concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a predisposing gene for a recently characterized cancer syndrome, hereditary leiomyomatosis and renal cell cancer (HLRCC), was identified and the role of the gene was investigated in other familial cancers and in nonsyndromic tumorigenesis. HLRCC is a dominantly inherited disorder predisposing predominantly to uterine and skin leiomyomas, and also to renal cell cancer and uterine leiomyosarcoma. The disease gene was recently localized in Finnish families to 1q42-q43 by a genome-wide linkage search. Independently in the UK, a clinically similar condition, multiple cutaneous and uterine leiomyomata (MCUL), was linked to the same chromosomal region, strongly suggesting that HLRCC and MCUL are actually a single syndrome. Linkage results were confirmed by detecting loss of heterozygosity (LOH) at the disease locus in most of the patients' tumors, suggesting that this predisposing gene acts as a tumor suppressor. Through detailed investigation by genotyping of microsatellite markers and haplotype construction in Finnish and UK HLRCC/MCUL families we were able to narrow the disease locus down to 1.6 Mb. Extensive mutation screening of known and predicted transcripts in the target region resulted in identification of the HLRCC predisposing gene, fumarase (fumarate hydratase, FH). FH is a key enzyme in energy metabolism, catalyzing fumarate to malate in the tricarboxylic acid cycle (TCAC) in mitochondria. Germline alterations in FH segregating with the disease were detected in 25 of 42 HLRCC/MCUL families including whole-gene deletions, truncating small deletions/insertions and nonsense mutations, as well as substitutions or deletions of highly conserved amino acids. Biallelic inactivation was detected in almost all studied tumors of HLRCC patients. Furthermore, FH enzyme activity was reduced in the patients' normal tissues and was completely or virtually absent from tumors. Based on these findings, we extensively demonstrated that mutations in FH underlie the HLRCC/MCUL syndrome. In our studies of other familial cancers, evidence for involvement of FH defects was not found in familial prostate and breast cancers. To investigate the role of FH in sporadic tumorigenesis, we analyzed 652 lesions, including a series of 353 nonsyndromic counterparts of tumor types associated with HLRCC. Mutations in nonsyndromic tumors were rare and appeared to be limited to tumor types observed in the hereditary form of the disease. Biallelic inactivation of FH was detected in a uterine leiomyosarcoma, a cutaneous leiomyoma, a soft-tissue sarcoma, and in two uterine leiomyomas. In the uterine leiomyosarcoma and the cutaneous lesion FH mutations originated from the germline whereas the soft-tissue sarcoma harbored purely somatic changes. In uterine leiomyomas somatic mutations were detected in the two out of five tumors with LOH at the FH locus. Our findings demonstrate that FH inactivation is also involved in nonhereditary tumor development, and further support the hypothesis that FH acts as a tumor suppressor. The role of FH in predisposition to malignancies, renal cell carcinoma and leiomyosarcoma is important in the diagnosis and prevention of cancer among HLRCC patients. This study is of general clinical interest, because prior to our findings, little was known about the molecular genetics of uterine leiomyomas, the most common tumors of women.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Celiac disease, or gluten intolerance, is triggered by dietary glutens in genetically susceptible individuals and it affects approximately 1% of the Caucasian population. The best known genetic risk factors for celiac disease are HLA DQ2 and DQ8 heterodimers, which are necessary for the development of the disease. However, they alone are not sufficient for disease induction, other risk factors are required. This thesis investigated genetic factors for celiac disease, concentrating on susceptibility loci on chromosomes 5q31-q33, 19p13 and 2q12 previously reported in genome-wide linkage and association studies. In addition, a novel genotyping method for the detection of HLA DQ2 and DQ8 coding haplotypes was validated. This study was conducted using Finnish and Hungarian family materials, and Finnish, Hungarian and Italian case-control materials. Genetic linkage and association were analysed in these materials using candidate gene and fine-mapping approaches. The results confirmed linkage to celiac disease on the chromosomal regions 5q31-q33 and 19p13. Fine-mapping on chromosome 5q31-q33 revealed several modest associations in the region, and highlighted the need for further investigations to locate the causal risk variants. The MYO9B gene on chromosome 19p13 showed evidence for linkage and association particularly with dermatitis herpetiformis, the skin manifestation of celiac disease. This implies a potential difference in the genetic background of the intestinal and skin forms of the disease, although studies on larger samplesets are required. The IL18RAP locus on chromosome 2q12, shown to be associated with celiac disease in a previous genome-wide association study and a subsequent follow-up, showed association in the Hungarian population in this study. The expression of IL18RAP was further investigated in small intestinal tissue and in peripheral blood mononuclear cells. The results showed that IL18RAP is expressed in the relevant tissues. Two putative isoforms of IL18RAP were detected by Western blot analysis, and the results suggested that the ratios and total levels of these isoforms may contribute to the aetiology of celiac disease. A novel genotyping method for celiac disease-associated HLA haplotypes was also validated in this thesis. The method utilises single-nucleotide polymorphisms tagging these HLA haplotypes with high sensitivity and specificity. Our results suggest that this method is transferable between populations, and it is suitable for large-scale analysis. In conclusion, this doctorate study provides an insight into the roles of the 5q31-q33, MYO9B, IL18RAP and HLA loci in the susceptibility to celiac disease in the Finnish, Hungarian and Italian populations, highlighting the need for further studies at these genetic loci and examination of the function of the candidate genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a severe mental disorder affecting 0.4-1% of the population worldwide. It is characterized by impairments in the perception of reality and by significant social or occupational dysfunction. The disorder is one of the major contributors to the global burden of diseases. Studies of twins, families, and adopted children point to strong genetic components for schizophrenia, but environmental factors also play a role in the pathogenesis of disease. Molecular genetic studies have identified several potential positional candidate genes. The strongest evidence for putative schizophrenia susceptibility loci relates to the genes encoding dysbindin (DTNBP1) and neuregulin (NRG1), but studies lack impressive consistency in the precise genetic regions and alleles implicated. We have studied the role of three potential candidate genes by genotyping 28 single nucleotide polymorphisms in the DNTBP1, NRG1, and AKT1 genes in a large schizophrenia family sample consisting of 441 families with 865 affected individuals from Finland. Our results do not support a major role for these genes in the pathogenesis of schizophrenia in Finland. We have previously identified a region on chromosome 5q21-34 as a susceptibility locus for schizophrenia in a Finnish family sample. Recently, two studies reported association between the γ-aminobutyric acid type A receptor cluster of genes in this region and one study showed suggestive evidence for association with another regional gene encoding clathrin interactor 1 (CLINT1, also called Epsin 4 and ENTH). To further address the significance of these genes under the linkage peak in the Finnish families, we genotyped SNPs of these genes, and observed statistically significant association of variants between GABRG2 and schizophrenia. Furthermore, these variants also seem to affect the functioning of the working memory. Fetal events and obstetric complications are associated with schizophrenia. Rh incompatibility has been implicated as a risk factor for schizophrenia in several epidemiological studies. We conducted a family-based candidate-gene study that assessed the role of maternal-fetal genotype incompatibility at the RhD locus in schizophrenia. There was significant evidence for an RhD maternal-fetal genotype incompatibility, and the risk ratio was estimated at 2.3. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia. In conclusion, in this thesis we found evidence that one GABA receptor subunit, GABRG2, is significantly associated with schizophrenia. Furthermore, it also seems to affect to the functioning of the working memory. In addition, an RhD maternal-fetal genotype incompatibility increases the risk of schizophrenia by two-fold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are major contributors to morbidity and mortality worldwide. Several interacting environmental, biochemical, and genetic risk factors can increase disease susceptibility. While some of the genes involved in the etiology of CVD are known, many are yet to be discovered. During the last few decades, scientists have searched for these genes with genome-wide linkage and association methods, and with more targeted candidate gene studies. This thesis investigates variation within the upstream transcription factor 1 (USF1) gene locus in relation to CVD risk factors, atherosclerosis, and incidence and prevalence of CVD. This candidate gene was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease. The gene is a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function. First, we examined association between USF1 variants and several CVD risk factors, such as lipid phenotypes, body composition measures, and metabolic syndrome, in two prospective population cohorts. Our data suggested that USF1 contributes to these CVD risk factors at the population level. Notably, the associations with quantitative measurements were mostly detected among study subjects with CVD or metabolic syndrome, suggesting complex interactions between USF1 effects and the pathophysiological state of an individual. Second, we investigated how variation at the USF1 locus contributes to atherosclerotic lesions of the coronary arteries and abdominal aorta. For this, we used two study samples of middle-aged men with detailed measurements of atherosclerosis obtained in autopsy. USF1 variation significantly associated with areas of several types of lesions, especially with calcification of the arteries. Next, we tested what effect the USF1 risk variants have on sudden cardiac death and incidence of CVD. The atherosclerosis-associated risk variant increased the risk of sudden cardiac death of the same study subjects. Furthermore, USF1 alleles associated with incidence of CVD in the Finnish population follow-up cohorts. These associations were especially prominent among women, suggesting a sex specific effect, which has also been detected in subsequent studies. Finally, as some of the low-yield DNA samples of the Finnish follow-up study cohort needed to be whole-genome amplified (WGA) prior to genotyping, we evaluated whether the produced WGA genotypes were of good quality. Although the samples giving genotype discrepancies could not be detected before genotyping with standard laboratory quality control methods, our results suggested that enhanced quality control at the time of the genotyping could identify such samples. In addition, combining two WGA reactions into one pooled DNA sample for genotyping markedly reduced the number of discrepancies and samples showing them. In conclusion, USF1 seems to have a role in the etiology of CVD. Additional studies are warranted to identify functional variants and to study interactions between USF1 and other genetic or environmental factors. This USF1 study, and other studies with low DNA yield of some samples, can benefit from whole genome amplification of the low-yield samples prior to genotyping. Careful quality control procedures are, however, needed in WGA genotyping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetics, the science of heredity and variation in living organisms, has a central role in medicine, in breeding crops and livestock, and in studying fundamental topics of biological sciences such as evolution and cell functioning. Currently the field of genetics is under a rapid development because of the recent advances in technologies by which molecular data can be obtained from living organisms. In order that most information from such data can be extracted, the analyses need to be carried out using statistical models that are tailored to take account of the particular genetic processes. In this thesis we formulate and analyze Bayesian models for genetic marker data of contemporary individuals. The major focus is on the modeling of the unobserved recent ancestry of the sampled individuals (say, for tens of generations or so), which is carried out by using explicit probabilistic reconstructions of the pedigree structures accompanied by the gene flows at the marker loci. For such a recent history, the recombination process is the major genetic force that shapes the genomes of the individuals, and it is included in the model by assuming that the recombination fractions between the adjacent markers are known. The posterior distribution of the unobserved history of the individuals is studied conditionally on the observed marker data by using a Markov chain Monte Carlo algorithm (MCMC). The example analyses consider estimation of the population structure, relatedness structure (both at the level of whole genomes as well as at each marker separately), and haplotype configurations. For situations where the pedigree structure is partially known, an algorithm to create an initial state for the MCMC algorithm is given. Furthermore, the thesis includes an extension of the model for the recent genetic history to situations where also a quantitative phenotype has been measured from the contemporary individuals. In that case the goal is to identify positions on the genome that affect the observed phenotypic values. This task is carried out within the Bayesian framework, where the number and the relative effects of the quantitative trait loci are treated as random variables whose posterior distribution is studied conditionally on the observed genetic and phenotypic data. In addition, the thesis contains an extension of a widely-used haplotyping method, the PHASE algorithm, to settings where genetic material from several individuals has been pooled together, and the allele frequencies of each pool are determined in a single genotyping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wood decay fungi belonging to the species complex Heterobasidion annosum sensu lato are among the most common and economically important species causing root rot and stem decay in conifers of the northern temperate regions. New infections by these pathogens can be suppressed by tree stump treatments using chemical or biological control agents. In Finland, the corticiaceous fungus Phlebiopsis gigantea has been formulated into a commercial biocontrol agent called Rotstop (Verdera Ltd.). This thesis addresses the ecological impacts of Rotstop biocontrol treatment on the mycoflora of conifer stumps. Locally, fungal communities within Rotstop-treated and untreated stumps were analyzed using a novel method based on DGGE profiling of small subunit ribosomal DNA fragments amplified directly from wood samples. Population analyses for P. gigantea and H. annosum s.l. were conducted to evaluate possible risks associated with local and/or global distribution of the Rotstop strain. Based on molecular community profiling by DGGE, we detected a few individual wood-inhabiting fungal species (OTUs) that seemed to have suffered or benefited from the Rotstop biocontrol treatment. The DGGE analyses also revealed fungal diversity not retrieved by cultivation and some fungal sequence types untypical for decomposing conifer wood. However, statistical analysis of DGGE community profiles obtained from Rotstop-treated and untreated conifer stumps revealed that the Rotstop treatment had not caused a statistically significant reduction in the species diversity of wood-inhabiting fungi within our experimental forest plots. Locally, ISSR genotyping of cultured P. gigantea strains showed that the Rotstop biocontrol strain was capable of surviving up to six years within treated Norway spruce stumps, while in Scots pine stumps it was sooner replaced by successor fungal species. In addition, the spread of resident P. gigantea strains into Rotstop-treated forest stands seemed effective in preventing the formation of genetically monomorphic populations in the short run. On a global scale, we detected a considerable level of genetic differentiation between the interfertile European and North American populations of P. gigantea. These results strongly suggest that local biocontrol strains should be used in order to prevent global spread of P. gigantea and hybrid formation between geographically isolated populations. The population analysis for H. annosum s.l. revealed a collection of Chinese fungal strains that showed a high degree of laboratory fertility with three different allopatric H. annosum s.l. taxa. However, based on the molecular markers, the Chinese strains could be clearly affiliated with the H. parviporum taxonomical cluster, which thus appears to have a continuous distribution range from Europe through southern Siberia to northern China. Keywords: Rotstop, wood decay, DGGE, ISSR fingerprinting, ribosomal DNA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basis of this work was the identification of a genomic region on chromosome 7p14-p15 that strongly associated with asthma and high serum total immunoglobulin E in a Finnish founder population from Kainuu. Using a hierarchical genotyping approach the linkage region was narrowed down until an evolutionary collectively inherited 133-kb haplotype block was discovered. The results were confirmed in two independent data sets: Asthma families from Quebec and allergy families from North-Karelia. In all the three cohorts studied, single nucleotide polymorphisms tagging seven common gene variants (haplotypes) were identified. Over half of the asthma patients carried three evolutionary closely related susceptibility haplotypes as opposed to approximately one third of the healthy controls. The risk effects of the gene variants varied from 1.4 to 2.5. In the disease-associated region, there was one protein-coding gene named GPRA (G Protein-coupled Receptor for Asthma susceptibility also known as NPSR1) which displayed extensive alternative splicing. Only the two isoforms with distinct intracellular tail sequences, GPRA-A and -B, encoded a full-length G protein-coupled receptor with seven transmembrane regions. Using various techniques, we showed that GPRA is expressed in multiple mucosal surfaces including epithelial cells throughout the respiratory tract. GPRA-A has additional expression in respiratory smooth muscle cells. However, in bronchial biopsies with unknown haplotypes, GPRA-B was upregulated in airways of all patient samples in contrast to the lack of expression in controls. Further support for GPRA as a common mediator of inflammation was obtained from a mouse model of ovalbumin-induced inflammation, where metacholine-induced airway hyperresponsiveness correlated with elevated GPRA mRNA levels in the lung and increased GPRA immunostaining in pulmonary macrophages. A novel GPRA agonist, Neuropeptide S (NPS), stimulated phagocytosis of Esterichia coli bacteria in a mouse macrophage cell line indicating a role for GPRA in the removal of inhaled allergens. The suggested GPRA functions prompted us to study, whether GPRA haplotypes associate with respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in infants sharing clinical symptoms with asthma. According to the results, near-term RDS and asthma may also share the same susceptibility and protective GPRA haplotypes. As in asthma, GPRA-B isoform expression was induced in bronchial smooth muscle cells in RDS and BPD suggesting a role for GPRA in bronchial hyperresponsiveness. In conclusion, the results of the present study suggest that the dysregulation of the GPRA/NPS pathway may not only be limited to the individuals carrying the risk variants of the gene but is also involved in the regulation of immune functions of asthma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we identified a novel asthma susceptibility gene, NPSR1 (neuropeptide S receptor 1) on chromosome 7p14.3 by the positional cloning strategy. An earlier significant linkage mapping result among Finnish Kainuu asthma families was confirmed in two independent cohorts: in asthma families from Quebec, Canada and in allergy families from North Karelia, Finland. The linkage region was narrowed down to a 133-kb segment by a hierarchial genotyping method. The observed 77-kb haplotype block showed 7 haplotypes and a similar risk and nonrisk pattern in all three populations studied. All seven haplotypes occur in all three populations at frequences > 2%. Significant elevated relative risks were detected for elevated total IgE (immunoglobulin E) or asthma. Risk effects of the gene variants varied from 1.4 to 2.5. NPSR1 belongs to the G protein-coupled receptor (GPCR) family with a topology of seven transmembrane domains. NPSR1 has 9 exons, with the two main transcripts, A and B, encoding proteins of 371 and 377 amino acids, respectively. We detected a low but ubiquitous expression level of NPSR1-B in various tissues and endogenous cell lines while NPSR1-A has a more restricted expression pattern. Both isoforms were expressed in the lung epithelium. We observed aberrant expression levels of NPSR1-B in smooth muscle in asthmatic bronchi as compared to healthy. In an experimental mouse model, the induced lung inflammation resulted in elevated Npsr1 levels. Furthermore, we demonstrated that the activation of NPSR1 with its endogenous agonist, neuropeptide S (NPS), resulted in a significant inhibition of the growth of NPSR1-A overexpressing stable cell lines (NPSR1-A cells). To determine which target genes were regulated by the NPS-NPSR1 pathway, NPSR1-A cells were stimulated with NPS, and differentially expressed genes were identified using the Affymetrix HGU133Plus2 GeneChip. A total of 104 genes were found significantly up-regulated and 42 down-regulated 6 h after NPS administration. The up-regulated genes included many neuronal genes and some putative susceptibility genes for respiratory disorders. By Gene Ontology enrichment analysis, the biological process terms, cell proliferation, morphogenesis and immune response were among the most altered. The expression of four up-regulated genes, matrix metallopeptidase 10 (MMP10), INHBA (activin A), interleukin 8 (IL8) and EPH receptor A2 (EPHA2), were verified and confirmed by quantitative reverse-transcriptase-PCR. In conclusion, we identified a novel asthma susceptibility gene, NPSR1, on chromosome 7p14.3. NPS-NPSR1 represents a novel pathway that regulates cell proliferation and immune responses, and thus may have functional relevance in the pathogenesis of asthma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Aims of the study were: (i) to characterise the clinical picture, immunological features and changes in brain morphology and function in patients with widespread unilateral pain and HSV-infections, and (ii) to analyse the prevalence, clinical symptoms and immunological predisposing factors of HSV-2 induced recurrent lymphocytic meningitis (RLM) in Southern Finland. Patients and methods: Patients for the studies were recruited from the Pain Clinic, and from the Department of Neurology, at Helsinki University Central Hospital. Plasma concentrations of IgM, IgA, IgG, and IgG1-4, and serum concentrations of C3, C4 were measured. Serological anti-HSV-1 and -2 antibody status was tested. C4 genotyping, HLA-A, HLA-B and HLA-DRB1 typing, MBL2 genotyping, and IgG1 and IgG3 allotyping (Gm) were performed. Clinical neurological examination, quantitative sensory testing, skin biopsy, and functional magnetic resonance imaging were also performed. Results: HSV probably has a role in the generation of a pathological pain state. Low serum IgG1 and IgG3 levels, made the patients vulnerable for recurring HSV infections. Both functional and structural changes were observed in the brain pain-processing areas in the patients: they had less pain-related activity in the insular cortices bilaterally, in the anterior cingular cortex (ACC), and in the thalamus, and the gray matter density was lower in the ACC, in the frontal and prefrontal cortices. In the meningitis studies it was shown that RLM is more common and less benign than previously reported, and that neuropathic pain is frequently present both during and after meningitis episodes. HLA-DRB1*01, HLA-B*27, and low IgG1 levels are predisposing factors for RLM. Conclusions: Patients are vulnerable to recurrent HSV infections because of subtle immunological abnormalities. HSV causes diverse clinical manifestations. First, the herpes simplex virus, or the inflammatory process triggered by it, may cause pathological widespread pain probably by activating glial cells in the CNS. In these patients, signs of alterations in the brain pain-processing areas can be demonstrated by functional brain imaging methods. Secondly, HSV-2 induced RLM is a rare complication of HSV-2 virus. The predisposing factors include low IgG1 subclass levels, HLA-DRB1*01 and HLA –B*27 genotypes. Neuropathic pain is frequently associated with RLM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Common migraine, i.e. migraine with (MA) or without aura (MO), is a chronic neurological disorder affecting about 10% of the Caucasian population. In MA, migraine headache is preceded by visual, sensoric and/or dysphasic reversible aura symptoms. Twin and family studies have suggested a multifactorial mode of inheritance for common migraine, and a stronger genetic component for MA than for MO. Since there is no biological or genetic marker to identify common migraine, aura symptoms provide a distinctive character to identify those suspected of suffering from migraine. The aim of this study was to identify MA susceptibility loci in well-phenotyped migraine samples with familial predisposition using different gene mapping methods. Genes coding for endothelin1 and its receptors EDNRA and ENDRB are potential candidate genes for cortical spreading depression (CSD), which is considered to be the underlying mechanism of migraine aura. The role of these genes in MA was studied in 850 Finnish migraine cases and 890 control individuals. Rare homozygous EDNRA SNPs showed nominal association with MA and with the age of onset trait (20 years). This result was also detected in the pooled analysis on 648 German MA cases and 651 control individuals when the test was adjusted for gender and sample origin. Evaluation of SNP genotyping reactions with two different DNA polymerase enzymes ensured that the genotype quality was high, and thus the discovered associations are considered reliable. The role of the 19p13 region was studied in a linkage analysis of 72 Finnish MA families. This region contains two migraine-associated genes: CACNA1A, which is associated with a predisposition to a rare Mendelian form of MA, familial hemiplegic migraine (FHM), and the insulin receptor gene (INSR) that is associated with common migraine. No evidence of linkage between the 19p13 and MA was detected. A novel visual aura locus was mapped to chromosome 9q21-q22 with significant evidence of linkage using a genome-wide linkage approach in 36 Finnish MA families. Five additional, potential loci were also detected. The 9q21-q22 region has previously been linked to occipitotemporal lobe epilepsy and MA, both of which involve prominent visual symptoms. Our result further supports a shared background for these episodic disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lupus erythematosus (LE) is a chronic, heterogeneous autoimmune disorder with abnormal immune responses, including production of autoantibodies and immune complexes. Clinical presentations of the disease range from mild cutaneous manifestations to a more generalised systemic involvement of internal organs. Cutaneous (CLE) forms are further subclassified into discoid LE (DLE), subacute cutaneous LE (SCLE) and acute cutaneous lupus erythematosus (ACLE), and may later progress to systemic disease (SLE). Both genetic and environmental factors contribute to the disease, although the precise aetiology is still elusive. Furthermore, complex gene-gene or gene-environment interactions may result in different subphenotypes of lupus. The genetic background of CLE is poorly known and only a few genes are confirmed, while the number of robust genetic associations in SLE exceeds 30. The aim of this thesis was to characterise the recruited patients clinically, and identify genetic variants conferring susceptibility to cutaneous variants of LE. Given that cutaneous and systemic disease may share underlying genetic factors, putative CLE candidate genes for genotyping were selected among those showing strong evidence of association in SLE. The correlation between relevant clinical manifestations and risk genotypes was investigated in order to find specific subphenotype associations. In addition, epistatic interactions in SLE were studied. Finally, the role of tissue degrading matrix metalloproteinases (MMP) in LE tissue injury was explored. These studies were conducted in Finnish case-control and family cohort, and Swedish case-control cohort. The clinical picture of the patients in terms of cutaneous, haematological and immunological findings resembled that described in the contemporary literature. However, the proportion of daily smokers was very high supporting the role of smoking in disease aetiology. The results confirmed that, even though clinically distinct entities, CLE and SLE share predisposing genetic factors. For the first time it was shown that known SLE susceptibility genes IRF5 and TYK2 also increase the risk of CLE. A tendency toward gene-gene interaction between these genes was found in SLE. As a remarkable novel finding, it was observed that ITGAM polymorphisms associated even more strongly to DLE than SLE, and the risk estimates were substantially higher than those reported for SLE. Several other recently identified SLE susceptibility genes showed signs of good or modest association especially in DLE. Subphenotype analyses indicated possible associations to clinical features, but marginally significant results reflected lack of sufficient power for these studies. Thorough immunohistochemical analyses of several MMPs demonstrated a role in epidermal changes and dermal tissue remodelling in diseased skin, and suggested that targeted action using selective MMP inhibitors may reduce lupus-induced damage in inflamed tissues. In conclusion, the results provide an insight into the genetics of CLE and demonstrate that genetic predisposition is at least in part shared between cutaneous and systemic variants of LE. This doctoral study has contributed IRF5, TYK2, ITGAM and several other novel genes to the so far short list of genes implicated in CLE susceptibility. Detailed examination of the function of these genes in CLE pathogenesis warrants further studies. Furthermore, the results support the need of subphenotype analysis with sample sizes large enough to reveal possible specific disease associations in order to better understand the heterogeneous nature and clinical specificities of the disease. Comprehensive analysis of clinical data suggests that smoking is an environmental triggering factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Well-known risk factors include tobacco smoking and alcohol consumption. Overall survival has improved, but is still low especially in developing countries. One reason for this is the often advanced stage of the disease at the time of diagnosis, but also lack of reliable prognostic tools to enable individualized patient treatment to improve outcome. To date, the TNM classification still serves as the best disease evaluation criterion, although it does not take into account the molecular basis of the tumor. The need for surrogate molecular markers for more accurate disease prediction has increased research interests in this field. We investigated the prevalence, physical status, and viral load of human papillomavirus (HPV) in HNSCC to determine the impact of HPV on head and neck carcinogenesis. The prevalence and genotyping of HPV were assessed with an SPF10 PCR microtiter plate-based hybridization assay (DEIA), followed by a line probe-based genotyping assay. More than half of the patients had HPV DNA in their tumor specimens. Oncogenic HPV-16 was the most common type, and coinfections with other oncogenic and benign associated types also existed. HPV-16 viral load was unevenly distributed among different tumor sites; the tonsils harbored significantly greater amounts of virus than other sites. Episomal location of HPV-16 was associated with large tumors, and both integrated and mixed forms of viral DNA were detected. In this series, we could not show that the presence of HPV DNA correlated with survival. In addition, we investigated the prevalence and genotype of HPV in laryngeal carcinoma patients in a prospective Nordic multicenter study based on fresh-frozen laryngeal tumor samples to determine whether the tumors were HPV-associated. These patients were also examined and interviewed at diagnosis for known risk factors, such as tobacco smoking and alcohol consumption, and for several other habituations to elucidate their effects on patient survival. HPV analysis was performed with the same protocols as in the first study. Only 4% of the specimens harbored HPV DNA. Heavy drinking was associated with poor survival. Heavy drinking patients were also younger than nonheavy drinkers and had a more advanced stage of disease at diagnosis. Heavy drinkers had worse oral hygiene than nonheavy drinkers; however, poor oral hygiene did not have prognostic significance. History of chronic laryngitis, gastroesophageal reflux disease, and orogenital sex contacts were rare in this series. To clarify why vocal cord carcinomas seldom metastasize, we determined tumor lymph vessel (LVD) and blood vessel (BVD) densities in HNSCC patients. We used a novel lymphatic vessel endothelial marker (LYVE-1 antibody) to locate the lymphatic vessels in HNSCC samples and CD31 to detect the blood microvessels. We found carcinomas of the vocal cords to harbor less lymphatic and blood microvessels than carcinomas arising from sites other than vocal cords. The lymphatic and blood microvessel densities did not correlate with tumor size. High BVD was strongly correlated with high LVD. Neither BVD nor LVD showed any association with survival in our series. The immune system plays an important role in tumorigenesis, as neoplastic cells have to escape the cytotoxic lymphocytes in order to survive. Several candidate HLA class II alleles have been reported to be prognostic in cervical carcinomas, an epithelial malignancy resembling HNSCC. These alleles may have an impact on head and neck carcinomas as well. We determined HLA-DRB1* and -DQB1* alleles in HNSCC patients. Healthy organ donors served as controls. The Inno-LiPA reverse dot-blot kit was used to identify alleles in patient samples. No single haplotype was found to be predictive of either the risk for head and neck cancer, or the clinical course of the disease. However, alleles observed to be prognostic in cervical carcinomas showed a similar tendency in our series. DRB1*03 was associated with node-negative disease at diagnosis. DRB1*08 and DRB1*13 were associated with early-stage disease; DRB1*04 had a lower risk for tumor relapse; and DQB1*03 and DQB1*0502 were more frequent in controls than in patients. However, these associations reached only borderline significance in our HNSCC patients.